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Abstract

Fragmentation caused by artificial barriers is one of the main stressors of rivers worldwide.
However, many barrier inventories only record large barriers, which underestimates barrier
numbers, and hence fragmentation. Corrected barrier numbers can be obtained via river
walkovers, but these are costly and time consuming. We assessed the performance of remote
sensing as an alternative to river walkovers for barrier discovery by comparing the number and
location of barriers detected in the field with those detected using Google Earth imagery. Only 56%
of known barriers could be detected remotely, but machine learning models predicted the
likelihood of remote detection with 62%—65% accuracy. Barriers located downstream were twice as
likely to be detected remotely than those in the headwaters, the probability of detection
diminishing by 3%—4% for every decrease in Strahler stream order and for every 10 km increase in
distance from the river mouth. Barriers located in forested reaches were 35% less likely to be
detected than those in open reaches. Observer skills also affected the ability to locate barriers
remotely and detection rate varied by 11% between experienced and less experienced observers,
suggesting that training might improve barrier detection. Our findings have implications for
estimates of river fragmentation because they show that the most under-represented structures in
barrier inventories, i.e. small barriers located in forested headwaters, are unlikely to be detected
remotely. Although remote sensing cannot fully replace ‘boots on the ground’ field surveys for
filling barrier data gaps, it can reduce the field work necessary to improve barrier inventories and
help inform optimal strategies for barrier removal under data-poor scenarios.

1. Introduction

To meet the targets of the EU Green Deal Agenda,
at least 25 000 km of rivers will need to be recon-
nected and be made free-flowing by 2030 [1], which
will require detailed knowledge of the extent of frag-
mentation and the location of instream barriers that
can be removed or mitigated. However, restoration
of river connectivity can be hampered by epistemic
uncertainty caused by data deficiencies and imperfect
knowledge of barrier numbers [2], as well as by onto-
logical uncertainty resulting from the inherent vari-
ability and unpredictability of river systems [3]. Many

© 2024 The Author(s). Published by IOP Publishing Ltd

official barrier databases are outdated and incomplete
[4-6], but the degree of barrier under-reporting var-
ies widely from place to place and also depends on
barrier size. For example, 68% of barriers in Europe’s
rivers are less than 2 m in height and are thought to be
underestimated by ~75% in official barrier inventor-
ies, compared to large dams whose number is under-
estimated by ~12% [4]. Because the impact of barri-
ers on river fragmentation is determined mostly by
the number and location of barriers, not by their
height [2, 7], accurate estimates of barrier numbers
(both large and small) are essential for maximizing
the benefits of restoring connectivity.
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Synoptic barrier inventories have tended to focus
on large and medium size dams that create reser-
voirs detectable from satellite images [8, 9] but
this can greatly underestimate the true extent of
fragmentation [4, 10-12] because most barriers are
not ponding structures. For example, in Europe there
are ~0.7 M unique longitudinal barrier records, but
the true number is estimated to exceed 1.2 million,
and could be as high as 3.7 million barriers [4], as
small structures are difficult to locate and are grossly
under-represented. Low-head barriers tend to have
lower per capita impacts on rivers than large dams,
but they are typically much more numerous [5, 13]
and their cumulative impacts on river fragmentation
are typically greater [14—16], an example of ‘death by
a thousand cuts’ [2].

Efforts to remove barriers and restore river con-
nectivity can be ineffectual if barrier numbers are
underestimated [2]. For example, although more
than 150 dams and weirs have been removed in
Spain over the last decade this has not improved con-
nectivity in any significant way [17]. Fragmentation
estimates based on incomplete barrier data could res-
ult in suboptimal decisions on barrier prioritization,
as they will typically underestimate the true extent
of fragmentation and exaggerate the predicted gains
accrued from barrier removal. If left uncorrected,
these efforts are unlikely to achieve free-flowing river
targets. Incomplete barrier data can still be useful to
plan river restoration programs, but only if the sub-
jacent biases are known and can be accounted for
explicitly [2, 16, 18, 19].

River walkovers provide the most reliable way of
locating missing barriers and assessing the true extent
of fragmentation [4-6, 10, 11], but these are labour
intensive and can be too expensive to undertake at
large spatial scales. Alternative ways of locating miss-
ing barriers are needed. Remote sensing has proved
useful in remote areas and can greatly increase the
completeness of barrier inventories at a fraction of
the cost of river walkovers [20-22], but its accuracy
in barrier discovery has rarely been tested. Estimating
the reliability of remote sensing for barrier discovery
is particularly important for small barriers as these are
the most numerous, and are generally located in the
headwaters [23, 24] where remote detection could be
more challenging.

Our objective was to determine the feasibility and
limitations of using remote sensing for identifying
instream barriers, as an alternative to costly ‘boots
on the ground’ field surveys. To this end, we assessed
to what extent barriers identified via river walkovers
could be detected using Google Earth, modelled bar-
rier detection, and estimated the associated errors.
Our ultimate aim was to reduce epistemological and
operational uncertainties regarding river fragment-
ation in order to facilitate progress on free-flowing
rivers targets.
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2. Methods

We defined longitudinal barriers as ‘any built struc-
ture that interrupts or modifies the flow of water, the
transport of sediments, or the movement of organ-
isms and can cause longitudinal discontinuity’; these
can be classified into six main types based on key fea-
tures and the extent of habitat modification [2, 4, 25]:
dam, weir, sluice, ramp, ford, and culvert. There were
no sluices in our data set, and we excluded five dams
as these were too few for analysis.

2.1. Ground truthing remote barrier detection with
field data from river walkovers

We used Google Earth (version 9.136.0.2) for remote
barrier detection because this service is free, easy
to use, and provides convenient access to stable,
high-spatial resolution imagery [26], representing
the most popular tool for remote detection of river
infrastructures [4, 11, 26-29]. Google Earth imagery
is built from multiple datasets and its resolution typ-
ically varies from ~10-30 m px ! for satellite imagery
[30] to ~0.15-0.50 m px ! for aerial photography
[31].

We used two types of datasets (‘exhaustive’ and
‘sample’) to model the probability of remote detec-
tion. An ‘exhaustive’ dataset was obtained by con-
ducting a full walkover of an entire catchment in
Wales (River Afan, 171 km of total river length;
figure 1) and recording and photographing all arti-
ficial barriers present (n = 279) using the protocol
described in [4, 5]. Three observers working inde-
pendently (and without information on the number
or location of the barriers detected in the field) then
used Google Earth to systematically scan through the
catchment and record the coordinates of all visible
barriers. We chose a 500 m eye (camera) altitude to
detect barriers, as this generally resulted in the best
image quality and reduced variation between observ-
ers, but barriers were zoomed at a closer eye altitude
(typically 100-300 m) to help determine barrier type
(figure S1). To ascertain barrier detection, a 10 m buf-
fer radius was used to snap barrier coordinates to the
river network [29], and a matrix of pairwise haversine
(great circle) distances [32] was calculated between
the coordinates of barriers located in Google Earth
and those detected in the field. The Google Earth bar-
rier located closest (within a 100 m radius) of a barrier
detected in the field was considered to be most likely
match.

In addition to the exhaustive river walkover,
a second, ‘sample’ dataset was used consisting of
208 barriers that had been recorded during par-
tial (i.e. incomplete) river walkovers of the prin-
cipal salmon rivers of Wales during 2018-2021 [33].
Barrier coordinates were then uploaded into Google
Earth and an attempt was made to locate the bar-
riers remotely, using the same procedure as above.
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Figure 1. Location of the four main barrier types (culvert, ford, ramp, weir. N = 260) found in the complete walkover of the River
Afan catchment showing whether they were detected (closed fill) or undetected (open fill) in Google Earth.

Therefore, each of the 487 barriers detected in the
field during the river walkovers was cross-referenced
with Google Earth imagery. However, while the
exhaustive field dataset contained all the barriers
present in a catchment, the sample data set con-
tained only a sample of barriers present in some river
reaches.

2.2. Barrier detection performance metrics

To estimate the performance of remote barrier detec-
tion we calculated four classification metrics and
associated 95% confidence intervals (95 CIs) [34, 35].
We calculated ‘detection rate’ as the proportion of
each barrier type that was detected remotely using
Google Earth (regardless of whether they were classi-
fied into the correct barrier type or not). ‘Sensitivity’
measures the likelihood that a barrier would be detec-
ted remotely when a barrier existed in the field (true
positive) and was calculated as the ratio of true pos-
itives to the sum of true positives (tp) and false neg-
atives (fn). ‘Specificity’ measures the likelihood that
a barrier would be detected remotely when there was
no barrier (false positive) and was calculated as the
ratio of true negatives (tn) to the sum of true negatives

(tn) and false positives (fp). ‘Accuracy’ refers to the
likelihood that a barrier would be classified cor-
rectly by remote sensing. Perfect barrier detection
would yield 100% accuracy, detecting all true barriers
(100% sensitivity), without any false positives (100%
specificity).

2.3. Repeatability of barrier detection

To assess the repeatability of barrier detection using
Google Earth (i.e. to what extent barrier detection
depended on the skills of the observer) we calculated
detection agreement between three raters using the
exhaustive data set and the S-statistic in the ‘raters’
R-package [36], along with bootstrapped 95 Cls. The
S-statistic is a modification of the Fleiss—Kappa agree-
ment which is suitable for nominal data like ours
(i.e. barriers were ‘detected’ or ‘undetected’) and is
unaffected by paradoxes that sometimes introduce
biases in the Kappa index [37].

2.4. Modelling barrier detection via machine
learning

We modelled remote barrier detection via bin-
ary logistic regression (yes/no) and Maximum

3
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Likelihood, using 4 main barrier types [2, 4], sur-
vey type (exhaustive/sample), forest cover (yes/no),
stream order (Strahler), barrier height (1-6), alti-
tude (m), and distance to mouth (m) as predictors.
Strahler, distance to mouth, and altitude of each bar-
rier were calculated from the EU Digital Elevation
Model (DEM) E30N30 and were extracted using “fill
sinks’ [38] and the ‘Strahler order’ tool in the SAGA
toolkit, QGIS version 3.10 [39]. Barrier height was
grouped into six height classes: <0.5 m, 0.5 m—-1 m,
1 m-2m,2 m-5m,5m-10 m and >10 m, as used
in the pan-European AMBER atlas of stream barriers
[4]. There is no standard definition of how riparian
buffers should be defined from remote imagery
[40], so we adopted a simple operational definition
whereby barrier locations with 5 or more trees within
a 10 m radius of either bank were classified as ‘fores-
ted’, or as ‘open’ otherwise.

Continuous variables were scaled and centred
before analysis. We used the ‘gimulti’ R package [41]
with an exhaustive search to evaluate all main effect
models, using changes in AICc and the anova com-
mand to compare model fits. Standardized parameter
estimates were obtained by fitting the most plausible
model with an explicit intercept (~1) on a standard-
ized version of the dataset. The Wald z-distribution
approximation was used to compute 95% confid-
ence intervals and significance values. The accuracy
of model predictions was assessed by the area under
curve (AUC) method using 10 000 bootstrap samples.
Model assumptions were evaluated with the ‘perform-
ance’ R package [42].

We complemented the analysis by logistic regres-
sion with two other machine learning methods: ran-
dom forest and adaptive boosted trees using the
‘randomPForest’, ‘adabag’ and ‘rfPermute’ R packages.
Logistic regression is useful because it provides inter-
pretable coefficients that quantify the effects of each
predictor on the binary response variable, but can
have low predictive power when there are outliers,
correlated predictors, and/or non-linear relationships
[43], as was the case in our study. Random forest
and adaptive boosted trees, on the other hand, do
not provide interpretable coefficients, but can handle
non-linearity, and are less affected by outliers and cor-
related predictors, typically resulting in better pre-
dictive performance [44]. Combining logistic regres-
sion with other machine learning algorithms can
maximize predictive power and provide additional
insights into remote sensing applications [45].

3. Results

3.1. Consistency in barrier detection from remote
sensing

Consistency in barrier detection on the exhaustive
data set between three observers using Goggle Earth
was S = 0.66 (95 CI = 0.59-0.72, P < 0.001), which
can be regarded as ‘substantial’ [46].

M V Parks et al

3.2. Metrics of barrier detection performance
Observers were able to detect on average 50% of the
barriers found in the complete river walkover of the
River Afan using images, but this varied between 47%
and 55% depending on the individual observer, and
approximately one quarter (26%) of barriers were not
detected by any of the three observers (figure S2).
Barrier detection and sensitivity were higher for bar-
riers at river-road crossings (culverts and fords) than
for other barriers (ramps and weirs), but at a cost of
lower specificity and accuracy (figure 2). For example,
sensitivity was 87% for river-road crossings compared
to 69% for other barriers, while specificity was much
higher for other barriers (92%) than for barriers at
river-road crossings (18%).

Using both data sets (i.e. the exhaustive data set
and the sample data set from partial river walkovers)
barrier detection was 56%.

3.3. Predictors of barrier detection
We modelled the probability of detection of 468 bar-
riers with complete data (n = 260 from the full sur-
vey and n = 208 from the partial surveys). We ran
all 128 possible main-effects models with the seven
predictors (i.e. 27), as there was no compelling reason
to include some predictors but not others. The most
plausible model contained five predictors (table S1)
that were statistically significant according to an ana-
lysis of deviance (table 1). Three predictors (barrier
type, stream order and forest cover) reached over 95%
average model importance and two predictors (sur-
vey type and distance to mouth) reached over 75%
average model importance (figure 3(a)). Although the
model predictive power was low (R?> Tjur = 0.09,
P < 0.001), it was able to correctly predict whether
a barrier could be detected remotely with 62% accur-
acy (95 CI = 57%-67%). The R* Tjur is a coefficient
of discrimination for binary logistic regression [47]
and represents the difference between the average fit-
ted probability of the two logistic responses (in this
case detected vs undetected barriers). Using two other
ML approaches (figures 3(b) and (¢)) did not improve
model accuracy significantly (random forest accur-
acy = 57%; CI = 48%—65%; adaptive boosting accur-
acy = 65%, CI = 60%—69%), although the relative
importance of the main predictors varied (figure 3).

Using the logistic model, the probability of bar-
rier detection decreased significantly with increasing
distance from the river mouth (figure 4(a), likelihood
ratio test, LRT = 4.59, df = 1, P = 0.032) and forest
cover (figure 4(e), LRT = 7.76, df = 1, P = 0.005),
but increased with stream order (figure 4(b),
LRT = 22.84, df = 5, P < 0.001) and varied also
with barrier type (figure 4(c)), LRT = 20.56, df = 3,
P < 0.001) and survey type (figure 4(d), LRT = 3.87,
df =1, P = 0.049).

Inspection of odds ratios (figure 5) indicated that
barriers were twice more likely to be detected near
the river mouth (P-detection = 0.70) than in the
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Figure 2. Performance metrics (%) of remote detection of barriers at river-road crossings (culverts and fords) and other barriers
(ramps and weirs) found in an exhaustive river walkover. The results show the means (£95 CI) of three raters working

independently.

Table 1. Results of single-term deletions using the dropl command (stats R package) comparing the full model with all seven predictors
with a reduced model where each predictor was removed in turn. Five significant predictors are highlighted in bold.

Predictor df Deviance AIC LRT p-value
Full model (none dropped) 599.11 627.11

Stream Order (Strahler) 5 621.95 639.95 22.84 < 0.001
Barrier Type 3 619.66 641.66 20.56 < 0.001
Forest Cover 1 606.86 632.86 7.76 0.005
Survey Type 1 602.97 628.97 3.87 0.049
Scale (Dist. to mouth) 1 603.70 629.70 4.59 0.032
Scale (Altitude) 1 599.17 625.17 0.07 0.796
Scale (Height class) 1 599.29 625.29 0.18 0.670

LRT = likelihood ratio test.

headwaters (P-detection = 0.33, odds-ratio = 0.78,
P = 0.032), the probability of detection decreas-
ing by ~3% for every 10 km increase in dis-
tance moved upstream (figure 4(a)). This is also
evident when results are analysed by stream order
(figure 4(b)). As one moves upstream from sixth-
order reaches (P-detection = 0.90) to first order
streams (P-detection = 0.64) the probability of detec-
tion diminishes by about 4% for every single decrease
in stream order (odds-ratio = 5.34, P < 0.01). Barrier
type was an important predictor of barrier detec-
tion (figure 4(c)). Barriers at river-road crossings
such as culverts (P-detection = 0.63) and fords (P-
detection = 0.48) were significantly more likely to be
detected remotely than ramps (P-detection = 0.33)
or weirs (P-detection = 0.34, odds ratio = 0.28,
P < 0.001, figures 4(c) and S2). Barriers detected in
the exhaustive river walkover were less likely to be
detected in Google Earth (P-detection = 0.64) than
those found in less stringent, partial river surveys
(P-detection = 0.77; odds-ratio = 1.90, P = 0.049;
figure 4(d)). Forest cover had also a strong negative
effect on barrier detection (figure 4(e)), and barriers
located in forested reaches (P-detection = 0.45) were
35% less likely to be detected than those located in

open reaches (P-detection = 0.64, odds ratio = 0.46,
P =10.005).

4. Discussion

Restoration of stream connectivity can be hindered
by the existence of unrecorded barriers, as these
can reduce the ability to realistically simulate the
gains and costs of barrier removal and therefore its
effectiveness [2]. Two approaches that could help
overcome barrier data deficiencies are river walkovers
and remote detection.

River walkovers are arguably the gold standard
for ground-truthing barrier inventories [4, 5], but
these are costly and time consuming [5, 10, 11], and
impractical at large spatial scales [48]. Remote bar-
rier detection offers an alternative to river walkovers
for bridging data gaps in barrier inventories [9, 49,
50], but its reliability in barrier discovery has seldom
been tested systematically [10]. Our results indicate
that 44% of barriers could not be detected remotely,
these being mostly small structures <2 m in height.
Other studies have also found that only a small pro-
portion of barriers could be detected remotely. For
example, in Ireland only 30% of barriers could be
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Figure 3. Predictor importance of three machine learning models of remote barrier detection: (a) logistic regression
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located using remote sensing [11]. In other stud-
ies, the probability of barrier detection in differ-
ent sub-catchments ranged from 0.67 to 1.00 [29],
although this consisted of partial barrier surveys
(i.e. not exhaustive ones) which, as our study shows,
tend to overestimate the probability of detection,
presumably because they miss the less conspicuous
barriers.

We were able to predict whether a barrier could
be detected remotely with 62%—65% accuracy, which
is lower than the 73%-89% accuracy reported by oth-
ers for predicting barrier sites remotely using machine
learning [22, 51], perhaps because our barriers were

smaller than in other studies. Our modelling indic-
ates that the probability of barrier detection decreases
with increasing distance from the river mouth and
forest cover, and increases with stream order, vary-
ing also with barrier type and survey type, as well
as with observers’ skills. Barriers located in the main
stem and the lower part of the river network were
more than twice as likely to be detected remotely than
barriers in the headwaters, suggesting that most bar-
riers located in mountain streams might go undetec-
ted by remote sensing. The probability of detection
in our study diminished by ~4% for every decrease
in stream order. A lower probability of barrier detec-
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tion in smaller streams has been reported previously
[10, 11, 29], although the marginal effects of potential
confounding variables (e.g. altitude, forest cover, and
barrier type) had not been addressed.

We found that barriers located in forested stream
reaches were 35% less likely to be detected than those
located in open reaches. Tree cover has been found to
reduce the probability of barrier detection previously
[29], as does cloud cover [9]. As expected, barriers
located in a complete river walkover were less likely
to be detected remotely than those found in less strin-
gent, partial river surveys, where presumably only the

most conspicuous barriers would have been repor-
ted. This finding has implications for correcting bar-
rier under-reporting errors found in national barrier
inventories [4—6], as the value of using remote sens-
ing for bridging barrier data gaps depends on the
extent of under-reporting. Unlike most other stud-
ies, we were able to capitalize on a complete barrier
inventory of a whole catchment to obtain unbiased
estimates of barrier detection. Without a complete
river survey, determining the probability of barrier
detection without bias is difficult, as partial river sur-
veys will inevitably miss some barriers [52]. In our
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Figure 5. Odds ratios of five significant predictors of remote barrier detection using logistic regression compared to the reference
values for barrier type (culvert), survey type (exhaustive), forest cover (0 = open), and stream order (first order). Predictors that
increase the probability of barrier detection compared to the reference values are shown in blue, and those that decrease it are

shown in red.

study, the probability of barrier detection was over-
estimated by ~18% when ground-truthing was based
on partial river surveys compared to a complete river
walkover.

Barrier type was an important predictor of bar-
rier detection. Barriers are not distributed at ran-
dom in streams [2], and their locations can be pre-
dicted from knowledge of topography, anthropo-
genic pressures (including the road network) and
land use [4]. In general, all types of artificial barri-
ers are under-reported, but large dams are the easi-
est structures to be detected remotely [8, 9] and the
best documented barrier type [5, 53-55]. Even so,
almost 30% of dams are probably undetected [9],
although their location can be predicted from know-
ledge of stream slope and upstream impoundments
[51]. Collectively, impoundments have altered more
than 10% of free-flowing habitat in Europe’s rivers
[56], although it is the small barriers that have
probably caused the biggest cumulative impact on
fragmentation [4, 12, 14]. There were few dams in our
data set and dams were excluded from analysis, but
other studies have shown that dams have the lowest
under-reporting error [4, 5].

Barriers at river-road crossings, such as culverts
and fords, were significantly more likely to be detec-
ted remotely than ramps or weirs in our study,
although this was at a cost of lower accuracy and

specificity. This finding might seem counterintuit-
ive given their small size, upstream location [21]
and under-representation in barrier inventories [4—
6, 10]. We attribute this to the facility by which
river-road crossings could be readily detected using
remote sensing and GIS [20-22, 29]. Fords and cul-
verts might not always be detected from aerial images,
but bridges are much easier to see. Therefore, when
a bridge is not detected at a river-road crossing,
one can reasonably assume that a culvert or a ford
is present. Data for England and Wales [22] indic-
ates that ~ 45% of all river-road crossings con-
sist of culverts and fords (rather than bridges) and
therefore constitute potential barriers to free flow,
as well as an impediment for the movement of
both migratory and resident fish [57]. Culverts rank
among the most numerous and under-reported bar-
riers across Europe [4] and North America [22], but
their location can be predicted with some accuracy
from knowledge of upstream drainage area [22] and
their presence can be verified more easily than most
other barriers because they are accessible by track or
road [10].

Observer skills affected the ability to locate bar-
riers remotely and detection accuracy varied by 11%
between experienced and less experienced observers,
suggesting that prior training might improve bar-
rier detection. Two additional potential sources of
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error are the age of Google Earth images [29, 58] —
which are typically 1-3 years old and could miss some
new barriers—and differences in resolution and level
of detail between locations [59], which could affect
the probability of detection [29]. The resolution of
Google Earth imagery (1 ~ 0-30 m px~! for satel-
lite imagery [30] and ~0.15-0.50 m px ! for aerial
photography) is similar to that provided by other ser-
vices such as Planet Scope (3 m globally) [60] or ESA’s
10 m Sentinel-1 synthetic aperture radar (SAR) [54].
Although Google Earth does not provide information
on each image, the images we used to detect barri-
ers were almost certainly derived from high resolution
aerial photography, not from satellite images (figure
S2). Satellite images with similar sub-metre resolu-
tion are available, but these are only offered as a pay-
per-order service by some providers, are not available
everywhere, and might be too expensive to be used
across watersheds. In addition, improving image res-
olution alone might not be enough to detect barriers
in heavily forested streams, which made up 75% of all
the barriers in our study and reduced the probability
of detection by ~35%. The use of Light Detection and
Ranging (LiDAR) could help detect barriers through
the canopy, but only if barriers have a distinctive sur-
face roughness (to differentiate them from natural
rocks) or are at least 2 m in height [50], which would
miss more than 68% of instream barriers in Europe
[4]. The main advantage of Google Earth is that it is
a free service providing high resolution images glob-
ally, and this makes it the tool of choice for many
river applications [4, 11, 26-29]. Higher resolution
could improve remote barrier detection in the future,
but more significant gains can probably be obtained
through the development of bespoke image analysis
routines to identify and classify barriers from existing
images, as developed for remote land use classifica-
tion applications [34].

5. Conclusions

Numerous studies have reported a substantial under-
estimation of artificial river barriers, highlighting
the need for better barrier inventories [5, 6, 9, 52].
Remote detection of barriers can help overcome data
deficiencies, but our findings indicate that many bar-
riers are not currently detectable from aerial or satel-
lite images. Remote sensing, therefore, cannot fully
replace ‘boots on the ground’ river walkovers for
filling barrier data gaps and identifying barriers to
free flow [20, 61], but can make their discovery more
efficient. Thus, because the power to detect barri-
ers remotely varies in predictable ways—being high
for downstream barriers spanning across large rivers,
and low for upstream barriers in forested streams—
such knowledge can be used to improve strategies for
bridging barrier data gaps. For example, knowledge
of how different barriers are distributed in the stream,
and their associated probabilities of detection, could
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be used to target costly river walkovers where they
are most needed, and help derive more realistic meas-
ures of fragmentation that account for incomplete
information [12, 51]. In this sense, the location of
river-road crossings—readily obtained from existing
digital maps or aerial imagery- can be used to account
for the presence of fords and culverts with a higher
degree of confidence [22, 48, 52]. Globally, these are
the barriers most likely to be under-reported in exist-
ing barrier inventories [4], so addressing this know-
ledge gap is paramount for more accurate estimates
of stream fragmentation and the prioritization of bar-
rier removal [2]. More generally, our study provides a
better understanding of the power and shortcomings
of using remote sensing for filling barrier data gaps
in estimates of river fragmentation, and can help to
inform optimal strategies for barrier removal under
data-poor scenarios [2].
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